ergodox-firmware/src/keyboard/controller.c

1388 lines
45 KiB
C

/* ----------------------------------------------------------------------------
* ergoDOX : controller specific code
* ----------------------------------------------------------------------------
* Copyright (c) 2012 Ben Blazak <benblazak.dev@gmail.com>
* Released under The MIT License (MIT) (see "license.md")
* Project located at <https://github.com/benblazak/ergodox-firmware>
* ------------------------------------------------------------------------- */
#include "./controller.h"
// ----------------------------------------------------------------------------
/* returns
* - success: 0
* - error: number of the function that failed
*/
uint8_t kb_init(void) {
if (teensy_init()) // must be first
return 1;
if (mcp23018_init()) // must be second
return 2;
return 0; // success
}
/* returns
* - success: 0
* - error: number of the function that failed
*/
uint8_t kb_update_matrix(bool matrix[KB_ROWS][KB_COLUMNS]) {
if (teensy_update_matrix(matrix))
return 1;
if (mcp23018_update_matrix(matrix))
return 2;
return 0; // success
}
// ----------------------------------------------------------------------------
// check options
#if (MCP23018__DRIVE_ROWS && MCP23018__DRIVE_COLUMNS) \
|| !(MCP23018__DRIVE_ROWS || MCP23018__DRIVE_COLUMNS)
#error "See 'Pin drive direction' in 'options.h'"
#endif
// ----------------------------------------------------------------------------
// register addresses (see "mcp23018.md")
#define IODIRA 0x00 // i/o direction register
#define IODIRB 0x01
#define GPPUA 0x0C // GPIO pull-up resistor register
#define GPPUB 0x0D
#define GPIOA 0x12 // general purpose i/o port register (write modifies OLAT)
#define GPIOB 0x13
#define OLATA 0x14 // output latch register
#define OLATB 0x15
// TWI aliases
#define TWI_ADDR_WRITE ( (MCP23018_TWI_ADDRESS<<1) | TW_WRITE )
#define TWI_ADDR_READ ( (MCP23018_TWI_ADDRESS<<1) | TW_READ )
// ----------------------------------------------------------------------------
/* returns:
* - success: 0
* - failure: twi status code
*
* notes:
* - `twi_stop()` must be called *exactly once* for each twi block, the way
* things are currently set up. this may change in the future.
*/
uint8_t mcp23018_init(void) {
uint8_t ret;
// set pin direction
// - unused : input : 1
// - input : input : 1
// - driving : output : 0
twi_start();
ret = twi_send(TWI_ADDR_WRITE);
if (ret) goto out; // make sure we got an ACK
twi_send(IODIRA);
#if MCP23018__DRIVE_ROWS
twi_send(0b11111111); // IODIRA
twi_send(0b11000000); // IODIRB
#elif MCP23018__DRIVE_COLUMNS
twi_send(0b10000000); // IODIRA
twi_send(0b11111111); // IODIRB
#endif
twi_stop();
// set pull-up
// - unused : on : 1
// - input : on : 1
// - driving : off : 0
twi_start();
ret = twi_send(TWI_ADDR_WRITE);
if (ret) goto out; // make sure we got an ACK
twi_send(GPPUA);
#if MCP23018__DRIVE_ROWS
twi_send(0b11111111); // GPPUA
twi_send(0b11000000); // GPPUB
#elif MCP23018__DRIVE_COLUMNS
twi_send(0b10000000); // GPPUA
twi_send(0b11111111); // GPPUB
#endif
twi_stop();
// set logical value (doesn't matter on inputs)
// - unused : hi-Z : 1
// - input : hi-Z : 1
// - driving : hi-Z : 1
twi_start();
ret = twi_send(TWI_ADDR_WRITE);
if (ret) goto out; // make sure we got an ACK
twi_send(OLATA);
twi_send(0b11111111); //OLATA
twi_send(0b11111111); //OLATB
out:
twi_stop();
return ret;
}
/* returns:
* - success: 0
* - failure: twi status code
*/
#if KB_ROWS != 6 || KB_COLUMNS != 14
#error "Expecting different keyboard dimensions"
#endif
uint8_t mcp23018_update_matrix(bool matrix[KB_ROWS][KB_COLUMNS]) {
uint8_t ret, data;
// initialize things, just to make sure
// - it's not appreciably faster to skip this, and it takes care of the
// case when the i/o expander isn't plugged in during the first
// init()
ret = mcp23018_init();
// if there was an error
if (ret) {
// clear our part of the matrix
for (uint8_t row=0; row<=5; row++)
for (uint8_t col=0; col<=6; col++)
matrix[row][col] = 0;
return ret;
}
// --------------------------------------------------------------------
// update our part of the matrix
#if MCP23018__DRIVE_ROWS
for (uint8_t row=0; row<=5; row++) {
// set active row low : 0
// set other rows hi-Z : 1
twi_start();
twi_send(TWI_ADDR_WRITE);
twi_send(GPIOB);
twi_send( 0xFF & ~(1<<(5-row)) );
twi_stop();
// read column data
twi_start();
twi_send(TWI_ADDR_WRITE);
twi_send(GPIOA);
twi_start();
twi_send(TWI_ADDR_READ);
twi_read(&data);
twi_stop();
// update matrix
for (uint8_t col=0; col<=6; col++) {
matrix[row][col] = !( data & (1<<col) );
}
}
// set all rows hi-Z : 1
twi_start();
twi_send(TWI_ADDR_WRITE);
twi_send(GPIOB);
twi_send(0xFF);
twi_stop();
#elif MCP23018__DRIVE_COLUMNS
for (uint8_t col=0; col<=6; col++) {
// set active column low : 0
// set other columns hi-Z : 1
twi_start();
twi_send(TWI_ADDR_WRITE);
twi_send(GPIOA);
twi_send( 0xFF & ~(1<<col) );
twi_stop();
// read row data
twi_start();
twi_send(TWI_ADDR_WRITE);
twi_send(GPIOB);
twi_start();
twi_send(TWI_ADDR_READ);
twi_read(&data);
twi_stop();
// update matrix
for (uint8_t row=0; row<=5; row++) {
matrix[row][col] = !( data & (1<<(5-row)) );
}
}
// set all columns hi-Z : 1
twi_start();
twi_send(TWI_ADDR_WRITE);
twi_send(GPIOA);
twi_send(0xFF);
twi_stop();
#endif
// /update our part of the matrix
// --------------------------------------------------------------------
return ret; // success
}
// ----------------------------------------------------------------------------
// check options
#if (TEENSY__DRIVE_ROWS && TEENSY__DRIVE_COLUMNS) \
|| !(TEENSY__DRIVE_ROWS || TEENSY__DRIVE_COLUMNS)
#error "See 'Pin drive direction' in 'options.h'"
#endif
// ----------------------------------------------------------------------------
// processor frequency (from <http://www.pjrc.com/teensy/prescaler.html>)
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
#define CPU_16MHz 0x00
#define CPU_8MHz 0x01
#define CPU_4MHz 0x02
#define CPU_2MHz 0x03
#define CPU_1MHz 0x04
#define CPU_500kHz 0x05
#define CPU_250kHz 0x06
#define CPU_125kHz 0x07
#define CPU_62kHz 0x08
/*
* pin macros
* - note: you can move the `UNUSED`, `ROW`, and `COLUMN` pins around, but be
* sure to keep the set of all the pins listed constant. other pins are not
* movable, and either are referenced explicitly or have macros defined for
* them elsewhere.
* - note: if you change pin assignments, please be sure to update
* "teensy-2-0.md", and the '.svg' circuit diagram.
*/
// --- unused
#define UNUSED_0 C, 7
#define UNUSED_1 D, 7
#define UNUSED_2 D, 4 // hard to use with breadboard (on the end)
#define UNUSED_3 D, 5 // hard to use with breadboard (on the end)
#define UNUSED_4 E, 6 // hard to use with breadboard (internal)
// --- rows
#define ROW_0 F, 7
#define ROW_1 F, 6
#define ROW_2 F, 5
#define ROW_3 F, 4
#define ROW_4 F, 1
#define ROW_5 F, 0
// --- columns
#define COLUMN_7 B, 0
#define COLUMN_8 B, 1
#define COLUMN_9 B, 2
#define COLUMN_A B, 3
#define COLUMN_B D, 2
#define COLUMN_C D, 3
#define COLUMN_D C, 6
// --- helpers
#define SET |=
#define CLEAR &=~
#define _teensypin_write(register, operation, pin_letter, pin_number) \
do { \
((register##pin_letter)operation(1 << (pin_number))); \
_delay_us(1); /* allow pins time to stabilize */ \
} while (0)
#define teensypin_write(register, operation, pin) \
_teensypin_write(register, operation, pin)
#define _teensypin_read(pin_letter, pin_number) \
((PIN##pin_letter) & (1 << (pin_number)))
#define teensypin_read(pin) _teensypin_read(pin)
#define teensypin_write_all_unused(register, operation) \
do { \
teensypin_write(register, operation, UNUSED_0); \
teensypin_write(register, operation, UNUSED_1); \
teensypin_write(register, operation, UNUSED_2); \
teensypin_write(register, operation, UNUSED_3); \
teensypin_write(register, operation, UNUSED_4); \
} while (0)
#define teensypin_write_all_row(register, operation) \
do { \
teensypin_write(register, operation, ROW_0); \
teensypin_write(register, operation, ROW_1); \
teensypin_write(register, operation, ROW_2); \
teensypin_write(register, operation, ROW_3); \
teensypin_write(register, operation, ROW_4); \
teensypin_write(register, operation, ROW_5); \
} while (0)
#define teensypin_write_all_column(register, operation) \
do { \
teensypin_write(register, operation, COLUMN_7); \
teensypin_write(register, operation, COLUMN_8); \
teensypin_write(register, operation, COLUMN_9); \
teensypin_write(register, operation, COLUMN_A); \
teensypin_write(register, operation, COLUMN_B); \
teensypin_write(register, operation, COLUMN_C); \
teensypin_write(register, operation, COLUMN_D); \
} while (0)
/*
* update macros
*/
#define update_rows_for_column(matrix, column) \
do { \
/* set column low (set as output) */ \
teensypin_write(DDR, SET, COLUMN_##column); \
/* read rows 0..5 and update matrix */ \
matrix[0x0][0x##column] = !teensypin_read(ROW_0); \
matrix[0x1][0x##column] = !teensypin_read(ROW_1); \
matrix[0x2][0x##column] = !teensypin_read(ROW_2); \
matrix[0x3][0x##column] = !teensypin_read(ROW_3); \
matrix[0x4][0x##column] = !teensypin_read(ROW_4); \
matrix[0x5][0x##column] = !teensypin_read(ROW_5); \
/* set column hi-Z (set as input) */ \
teensypin_write(DDR, CLEAR, COLUMN_##column); \
} while (0)
#define update_columns_for_row(matrix, row) \
do { \
/* set row low (set as output) */ \
teensypin_write(DDR, SET, ROW_##row); \
/* read columns 7..D and update matrix */ \
matrix[0x##row][0x7] = !teensypin_read(COLUMN_7); \
matrix[0x##row][0x8] = !teensypin_read(COLUMN_8); \
matrix[0x##row][0x9] = !teensypin_read(COLUMN_9); \
matrix[0x##row][0xA] = !teensypin_read(COLUMN_A); \
matrix[0x##row][0xB] = !teensypin_read(COLUMN_B); \
matrix[0x##row][0xC] = !teensypin_read(COLUMN_C); \
matrix[0x##row][0xD] = !teensypin_read(COLUMN_D); \
/* set row hi-Z (set as input) */ \
teensypin_write(DDR, CLEAR, ROW_##row); \
} while (0)
// ----------------------------------------------------------------------------
/* returns
* - success: 0
*/
uint8_t teensy_init(void) {
// CPU speed : should match F_CPU in makefile
#if F_CPU != 16000000
#error "Expecting different CPU frequency"
#endif
CPU_PRESCALE(CPU_16MHz);
// onboard LED
// (tied to GND for hardware convenience)
DDRD &= ~(1 << 6); // set D(6) as input
PORTD &= ~(1 << 6); // set D(6) internal pull-up disabled
// (tied to Vcc for hardware convenience)
DDRB &= ~(1 << 4); // set B(4) as input
PORTB &= ~(1 << 4); // set B(4) internal pull-up disabled
// keyboard LEDs (see "PWM on ports OC1(A|B|C)" in "teensy-2-0.md")
TCCR1A = 0b10101001; // set and configure fast PWM
TCCR1B = 0b00001001; // set and configure fast PWM
// I2C (TWI)
twi_init(); // on pins D(1,0)
// unused pins
teensypin_write_all_unused(DDR, CLEAR); // set as input
teensypin_write_all_unused(PORT, SET); // set internal pull-up enabled
// rows and columns
teensypin_write_all_row(DDR, CLEAR); // set as input (hi-Z)
teensypin_write_all_column(DDR, CLEAR); // set as input (hi-Z)
#if TEENSY__DRIVE_ROWS
teensypin_write_all_row(PORT, CLEAR); // pull-up disabled
teensypin_write_all_column(PORT, SET); // pull-up enabled
#elif TEENSY__DRIVE_COLUMNS
teensypin_write_all_row(PORT, SET); // pull-up enabled
teensypin_write_all_column(PORT, CLEAR); // pull-up disabled
#endif
return 0; // success
}
/* returns
* - success: 0
*/
#if KB_ROWS != 6 || KB_COLUMNS != 14
#error "Expecting different keyboard dimensions"
#endif
uint8_t teensy_update_matrix(bool matrix[KB_ROWS][KB_COLUMNS]) {
#if TEENSY__DRIVE_ROWS
update_columns_for_row(matrix, 0);
update_columns_for_row(matrix, 1);
update_columns_for_row(matrix, 2);
update_columns_for_row(matrix, 3);
update_columns_for_row(matrix, 4);
update_columns_for_row(matrix, 5);
#elif TEENSY__DRIVE_COLUMNS
update_rows_for_column(matrix, 7);
update_rows_for_column(matrix, 8);
update_rows_for_column(matrix, 9);
update_rows_for_column(matrix, A);
update_rows_for_column(matrix, B);
update_rows_for_column(matrix, C);
update_rows_for_column(matrix, D);
#endif
return 0; // success
}
// ----------------------------------------------------------------------------
void twi_init(void) {
// set the prescaler value to 0
TWSR &= ~((1 << TWPS1) | (1 << TWPS0));
// set the bit rate
// - TWBR should be 10 or higher (datasheet section 20.5.2)
// - TWI_FREQ should be 400000 (400kHz) max (datasheet section 20.1)
TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;
}
uint8_t twi_start(void) {
// send start
TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTA);
// wait for transmission to complete
while (!(TWCR & (1 << TWINT)))
;
// if it didn't work, return the status code (else return 0)
if ((TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
return TW_STATUS; // error
return 0; // success
}
void twi_stop(void) {
// send stop
TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO);
// wait for transmission to complete
while (TWCR & (1 << TWSTO))
;
}
uint8_t twi_send(uint8_t data) {
// load data into the data register
TWDR = data;
// send data
TWCR = (1 << TWINT) | (1 << TWEN);
// wait for transmission to complete
while (!(TWCR & (1 << TWINT)))
;
// if it didn't work, return the status code (else return 0)
if ((TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MT_DATA_ACK) &&
(TW_STATUS != TW_MR_SLA_ACK))
return TW_STATUS; // error
return 0; // success
}
uint8_t twi_read(uint8_t *data) {
// read 1 byte to TWDR, send ACK
TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWEA);
// wait for transmission to complete
while (!(TWCR & (1 << TWINT)))
;
// set data variable
*data = TWDR;
// if it didn't work, return the status code (else return 0)
if (TW_STATUS != TW_MR_DATA_ACK)
return TW_STATUS; // error
return 0; // success
}
// ----------------------------------------------
// usb
// ----------------------------------------------
/**************************************************************************
*
* Configurable Options
*
**************************************************************************/
// You can change these to give your code its own name.
#define STR_MANUFACTURER L"FalbabeTech"
#define STR_PRODUCT L"ErgoDox ergonomic keyboard"
// Mac OS-X and Linux automatically load the correct drivers. On
// Windows, even though the driver is supplied by Microsoft, an
// INF file is needed to load the driver. These numbers need to
// match the INF file.
#define VENDOR_ID 0x1d50 // Openmoko, Inc.
#define PRODUCT_ID 0x6028 // ErgoDox ergonomic keyboard
// USB devices are supposed to implment a halt feature, which is
// rarely (if ever) used. If you comment this line out, the halt
// code will be removed, saving 102 bytes of space (gcc 4.3.0).
// This is not strictly USB compliant, but works with all major
// operating systems.
#define SUPPORT_ENDPOINT_HALT
/* report id */
#define REPORT_ID_SYSTEM 2
#define REPORT_ID_CONSUMER 3
/**************************************************************************
*
* Endpoint Buffer Configuration
*
**************************************************************************/
#define ENDPOINT0_SIZE 32
#define KEYBOARD_INTERFACE 0
#define KEYBOARD_ENDPOINT 1
#define KEYBOARD_SIZE 8
#define KEYBOARD_BUFFER EP_DOUBLE_BUFFER
#define KBD_KEYS (KEYBOARD_SIZE - 2)
#define EXTRA_INTERFACE 1
#define EXTRA_ENDPOINT 2
#define EXTRA_SIZE 8
#define EXTRA_BUFFER EP_DOUBLE_BUFFER
#define NKRO_INTERFACE 2
#define NKRO_ENDPOINT 3
#define NKRO_SIZE 24
#define NKRO_BUFFER EP_DOUBLE_BUFFER
#define NKRO_KEYS (NKRO_SIZE - 1)
#define DEBUG_INTERFACE 3
#define DEBUG_TX_ENDPOINT 4
#define DEBUG_TX_SIZE 32
#define DEBUG_TX_BUFFER EP_DOUBLE_BUFFER
static const uint8_t PROGMEM endpoint_config_table[] = {
// enable, UECFG0X(type, direction), UECFG1X(size, bank, allocation)
1, EP_TYPE_INTERRUPT_IN, EP_SIZE(KEYBOARD_SIZE) | KEYBOARD_BUFFER, // 1
1, EP_TYPE_INTERRUPT_IN, EP_SIZE(EXTRA_SIZE) | EXTRA_BUFFER, // 2
1, EP_TYPE_INTERRUPT_IN, EP_SIZE(NKRO_SIZE) | NKRO_BUFFER, // 3
#ifdef KBD_DEBUG
1, EP_TYPE_INTERRUPT_IN, EP_SIZE(DEBUG_TX_SIZE) | DEBUG_TX_BUFFER, // 4
#endif
0
};
/**************************************************************************
*
* Descriptor Data
*
**************************************************************************/
// Descriptors are the data that your computer reads when it auto-detects
// this USB device (called "enumeration" in USB lingo). The most commonly
// changed items are editable at the top of this file. Changing things
// in here should only be done by those who've read chapter 9 of the USB
// spec and relevant portions of any USB class specifications!
static const uint8_t PROGMEM device_descriptor[] = {
18, // bLength
1, // bDescriptorType
0x00, 0x02, // bcdUSB
0, // bDeviceClass
0, // bDeviceSubClass
0, // bDeviceProtocol
ENDPOINT0_SIZE, // bMaxPacketSize0
LSB(VENDOR_ID), MSB(VENDOR_ID), // idVendor
LSB(PRODUCT_ID), MSB(PRODUCT_ID), // idProduct
0x00, 0x01, // bcdDevice
1, // iManufacturer
2, // iProduct
0, // iSerialNumber
1 // bNumConfigurations
};
// Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60
static const uint8_t PROGMEM keyboard_hid_report_desc[] = {
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x06, // Usage (Keyboard),
0xA1, 0x01, // Collection (Application),
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xE0, // Usage Minimum (224),
0x29, 0xE7, // Usage Maximum (231),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x81, 0x02, // Input (Data, Variable, Absolute), Modifier byte
0x95, 0x01, // Report Count (1),
0x75, 0x08, // Report Size (8),
0x81, 0x03, // Input (Constant), Reserved byte
0x95, 0x05, // Report Count (5),
0x75, 0x01, // Report Size (1),
0x05, 0x08, // Usage Page (LEDs),
0x19, 0x01, // Usage Minimum (1),
0x29, 0x05, // Usage Maximum (5),
0x91, 0x02, // Output (Data, Variable, Absolute), LED report
0x95, 0x01, // Report Count (1),
0x75, 0x03, // Report Size (3),
0x91, 0x03, // Output (Constant), LED report padding
0x95, 0x06, // Report Count (6),
0x75, 0x08, // Report Size (8),
0x15, 0x00, // Logical Minimum (0),
0x25, 0xFF, // Logical Maximum(255),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x00, // Usage Minimum (0),
0x29, 0xFF, // Usage Maximum (255),
0x81, 0x00, // Input (Data, Array),
0xc0 // End Collection
};
// audio controls & system controls
// http://www.microsoft.com/whdc/archive/w2kbd.mspx
static const uint8_t PROGMEM extra_hid_report_desc[] = {
/* consumer */
0x05, 0x0c, // USAGE_PAGE (Consumer Devices)
0x09, 0x01, // USAGE (Consumer Control)
0xa1, 0x01, // COLLECTION (Application)
0x85, REPORT_ID_CONSUMER, // REPORT_ID (3)
0x15, 0x01, // LOGICAL_MINIMUM (0x1)
0x26, 0x9c, 0x02, // LOGICAL_MAXIMUM (0x29c)
0x19, 0x01, // USAGE_MINIMUM (0x1)
0x2a, 0x9c, 0x02, // USAGE_MAXIMUM (0x29c)
0x75, 0x10, // REPORT_SIZE (16)
0x95, 0x01, // REPORT_COUNT (1)
0x81, 0x00, // INPUT (Data,Array,Abs)
0xc0, // END_COLLECTION
};
static const uint8_t PROGMEM nkro_hid_report_desc[] = {
0x05, 0x01, // Usage Page (Generic Desktop),
0x09, 0x06, // Usage (Keyboard),
0xA1, 0x01, // Collection (Application),
// bitmap of modifiers
0x75, 0x01, // Report Size (1),
0x95, 0x08, // Report Count (8),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0xE0, // Usage Minimum (224),
0x29, 0xE7, // Usage Maximum (231),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum (1),
0x81, 0x02, // Input (Data, Variable, Absolute), ;Modifier byte
// LED output report
0x95, 0x05, // Report Count (5),
0x75, 0x01, // Report Size (1),
0x05, 0x08, // Usage Page (LEDs),
0x19, 0x01, // Usage Minimum (1),
0x29, 0x05, // Usage Maximum (5),
0x91, 0x02, // Output (Data, Variable, Absolute),
0x95, 0x01, // Report Count (1),
0x75, 0x03, // Report Size (3),
0x91, 0x03, // Output (Constant),
// bitmap of keys
0x95, NKRO_KEYS * 8, // Report Count (),
0x75, 0x01, // Report Size (1),
0x15, 0x00, // Logical Minimum (0),
0x25, 0x01, // Logical Maximum(1),
0x05, 0x07, // Usage Page (Key Codes),
0x19, 0x00, // Usage Minimum (0),
0x29, NKRO_KEYS * 8 - 1, // Usage Maximum (),
0x81, 0x02, // Input (Data, Variable, Absolute),
0xc0 // End Collection
};
// debug messages
#ifdef KBD_DEBUG
static const uint8_t PROGMEM debug_hid_report_desc[] = {
0x06, 0x31, 0xFF, // Usage Page 0xFF31 (vendor defined)
0x09, 0x74, // Usage 0x74
0xA1, 0x53, // Collection 0x53
0x75, 0x08, // report size = 8 bits
0x15, 0x00, // logical minimum = 0
0x26, 0xFF, 0x00, // logical maximum = 255
0x95, DEBUG_TX_SIZE, // report count
0x09, 0x75, // usage
0x81, 0x02, // Input (array)
0xC0 // end collection
};
#endif
#ifdef KBD_DEBUG
#define KEYBOARD_HID_DESC_NUM 0
#define EXTRA_HID_DESC_NUM 1
#define NKRO_HID_DESC_NUM 2
#define DEBUG_HID_DESC_NUM 3
#define NUM_INTERFACES 4
#else
#define KEYBOARD_HID_DESC_NUM 0
#define EXTRA_HID_DESC_NUM 1
#define NKRO_HID_DESC_NUM 2
#define NUM_INTERFACES 3
#endif
#define KEYBOARD_HID_DESC_OFFSET (9+(9+9+7)*KEYBOARD_HID_DESC_NUM+9)
#define EXTRA_HID_DESC_OFFSET (9+(9+9+7)*EXTRA_HID_DESC_NUM+9)
#define NKRO_HID_DESC_OFFSET (9+(9+9+7)*NKRO_HID_DESC_NUM+9)
#define DEBUG_HID_DESC_OFFSET (9+(9+9+7)*DEBUG_HID_DESC_NUM+9)
#define CONFIG1_DESC_SIZE (9+(9+9+7)*NUM_INTERFACES)
static const uint8_t PROGMEM config1_descriptor[CONFIG1_DESC_SIZE] = {
// configuration descriptor, USB spec 9.6.3, page 264-266, Table 9-10
9, // bLength;
2, // bDescriptorType;
LSB(CONFIG1_DESC_SIZE), // wTotalLength
MSB(CONFIG1_DESC_SIZE),
NUM_INTERFACES, // bNumInterfaces
1, // bConfigurationValue
0, // iConfiguration
0xA0, // bmAttributes
50, // bMaxPower
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
KEYBOARD_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x01, // bInterfaceSubClass (0x01 = Boot)
0x01, // bInterfaceProtocol (0x01 = Keyboard)
0, // iInterface
// HID descriptor, HID 1.11 spec, section 6.2.1
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode
1, // bNumDescriptors
0x22, // bDescriptorType
sizeof(keyboard_hid_report_desc), // wDescriptorLength
0,
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
KEYBOARD_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
KEYBOARD_SIZE, 0, // wMaxPacketSize
10, // bInterval
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
EXTRA_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x00, // bInterfaceSubClass
0x00, // bInterfaceProtocol
0, // iInterface
// HID descriptor, HID 1.11 spec, section 6.2.1
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode
1, // bNumDescriptors
0x22, // bDescriptorType
sizeof(extra_hid_report_desc), // wDescriptorLength
0,
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
EXTRA_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
EXTRA_SIZE, 0, // wMaxPacketSize
10, // bInterval
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
NKRO_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x00, // bInterfaceSubClass (0x01 = Boot)
0x00, // bInterfaceProtocol (0x01 = Keyboard)
0, // iInterface
// HID descriptor, HID 1.11 spec, section 6.2.1
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode
1, // bNumDescriptors
0x22, // bDescriptorType
sizeof(nkro_hid_report_desc), // wDescriptorLength
0,
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
NKRO_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
NKRO_SIZE, 0, // wMaxPacketSize
1, // bInterval
#ifdef KBD_DEBUG
// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
9, // bLength
4, // bDescriptorType
DEBUG_INTERFACE, // bInterfaceNumber
0, // bAlternateSetting
1, // bNumEndpoints
0x03, // bInterfaceClass (0x03 = HID)
0x00, // bInterfaceSubClass
0x00, // bInterfaceProtocol
0, // iInterface
// HID descriptor, HID 1.11 spec, section 6.2.1
9, // bLength
0x21, // bDescriptorType
0x11, 0x01, // bcdHID
0, // bCountryCode
1, // bNumDescriptors
0x22, // bDescriptorType
sizeof(debug_hid_report_desc), // wDescriptorLength
0,
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
DEBUG_TX_ENDPOINT | 0x80, // bEndpointAddress
0x03, // bmAttributes (0x03=intr)
DEBUG_TX_SIZE, 0, // wMaxPacketSize
1, // bInterval
#endif
};
// If you're desperate for a little extra code memory, these strings
// can be completely removed if iManufacturer, iProduct, iSerialNumber
// in the device desciptor are changed to zeros.
struct usb_string_descriptor_struct {
uint8_t bLength;
uint8_t bDescriptorType;
int16_t wString[];
};
static const struct usb_string_descriptor_struct PROGMEM string0 = {
4, 3, {0x0409}};
static const struct usb_string_descriptor_struct PROGMEM string1 = {
sizeof(STR_MANUFACTURER), 3, STR_MANUFACTURER};
static const struct usb_string_descriptor_struct PROGMEM string2 = {
sizeof(STR_PRODUCT), 3, STR_PRODUCT};
// This table defines which descriptor data is sent for each specific
// request from the host (in wValue and wIndex).
static struct descriptor_list_struct {
uint16_t wValue;
uint16_t wIndex;
const uint8_t *addr;
uint8_t length;
} const PROGMEM descriptor_list[] = {
// DEVICE descriptor
{0x0100, 0x0000, device_descriptor, sizeof(device_descriptor)},
// CONFIGURATION descriptor
{0x0200, 0x0000, config1_descriptor, sizeof(config1_descriptor)},
// HID/REPORT descriptors
{0x2100, KEYBOARD_INTERFACE, config1_descriptor + KEYBOARD_HID_DESC_OFFSET, 9},
{0x2200, KEYBOARD_INTERFACE, keyboard_hid_report_desc, sizeof(keyboard_hid_report_desc)},
// Extra HID Descriptor
{0x2100, EXTRA_INTERFACE, config1_descriptor + EXTRA_HID_DESC_OFFSET, 9},
{0x2200, EXTRA_INTERFACE, extra_hid_report_desc, sizeof(extra_hid_report_desc)},
// NKRO
{0x2100, NKRO_INTERFACE, config1_descriptor+NKRO_HID_DESC_OFFSET, 9},
{0x2200, NKRO_INTERFACE, nkro_hid_report_desc, sizeof(nkro_hid_report_desc)},
#ifdef KBD_DEBUG
// debug descriptors
{0x2100, DEBUG_INTERFACE, config1_descriptor+DEBUG_HID_DESC_OFFSET, 9},
{0x2200, DEBUG_INTERFACE, debug_hid_report_desc, sizeof(debug_hid_report_desc)},
#endif
// STRING descriptors
{0x0300, 0x0000, (const uint8_t *)&string0, 4},
{0x0301, 0x0409, (const uint8_t *)&string1, sizeof(STR_MANUFACTURER)},
{0x0302, 0x0409, (const uint8_t *)&string2, sizeof(STR_PRODUCT)}};
#define NUM_DESC_LIST (sizeof(descriptor_list)/sizeof(struct descriptor_list_struct))
/**************************************************************************
*
* Variables - these are the only non-stack RAM usage
*
**************************************************************************/
// zero when we are not configured, non-zero when enumerated
static volatile uint8_t usb_configuration=0;
// which modifier keys are currently pressed
// 1=left ctrl, 2=left shift, 4=left alt, 8=left gui
// 16=right ctrl, 32=right shift, 64=right alt, 128=right gui
uint8_t keyboard_modifier_keys=0;
// which keys are currently pressed, up to 6 keys may be down at once
uint8_t keyboard_keys[KBD_KEYS]={0,0,0,0,0,0};
// protocol setting from the host. We use exactly the same report
// either way, so this variable only stores the setting since we
// are required to be able to report which setting is in use.
static uint8_t keyboard_protocol=1;
// the idle configuration, how often we send the report to the
// host (ms * 4) even when it hasn't changed
static uint8_t keyboard_idle_config=125;
// count until idle timeout
static uint8_t keyboard_idle_count=0;
// which consumer key is currently pressed
uint16_t consumer_key;
uint16_t last_consumer_key;
volatile uint8_t debug_flush_timer=0;
/**************************************************************************
*
* Public Functions - these are the API intended for the user
*
**************************************************************************/
// initialize USB
void usb_init(void) {
HW_CONFIG();
USB_FREEZE(); // enable USB
PLL_CONFIG(); // config PLL
while (!(PLLCSR & (1 << PLOCK))) {} // wait for PLL lock
USB_CONFIG(); // start USB clock
UDCON = 0; // enable attach resistor
usb_configuration = 0;
UDIEN = (1 << EORSTE) | (1 << SOFE);
sei();
}
// return 0 if the USB is not configured, or the configuration
// number selected by the HOST
uint8_t usb_configured(void) {
return usb_configuration;
}
// send the contents of keyboard_keys and keyboard_modifier_keys
int8_t usb_keyboard_send(void) {
uint8_t i, intr_state, timeout;
if (!usb_configuration)
return -1;
intr_state = SREG;
cli();
UENUM = KEYBOARD_ENDPOINT;
timeout = UDFNUML + 50;
while (1) {
// are we ready to transmit?
if (UEINTX & (1 << RWAL)) { break; }
SREG = intr_state;
// has the USB gone offline?
if (!usb_configuration) { return -1; }
// have we waited too long?
if (UDFNUML == timeout) { return -1; }
// get ready to try checking again
intr_state = SREG;
cli();
UENUM = KEYBOARD_ENDPOINT;
}
UEDATX = keyboard_modifier_keys;
UEDATX = 0;
for (i = 0; i < 6; i++) {
UEDATX = keyboard_keys[i];
}
UEINTX = 0x3A;
keyboard_idle_count = 0;
SREG = intr_state;
return 0;
}
/**************************************************************************
*
* Private Functions - not intended for general user consumption....
*
**************************************************************************/
// USB Device Interrupt - handle all device-level events
// the transmit buffer flushing is triggered by the start of frame
//
ISR(USB_GEN_vect) {
uint8_t intbits, i; // used to declare a variable `t` as well, but it
// wasn't used ::Ben Blazak, 2012::
static uint8_t div4 = 0;
intbits = UDINT;
UDINT = 0;
if (intbits & (1 << EORSTI)) {
UENUM = 0;
UECONX = 1;
UECFG0X = EP_TYPE_CONTROL;
UECFG1X = EP_SIZE(ENDPOINT0_SIZE) | EP_SINGLE_BUFFER;
UEIENX = (1 << RXSTPE);
usb_configuration = 0;
}
if ((intbits & (1 << SOFI)) && usb_configuration) {
if (keyboard_idle_config && (++div4 & 3) == 0) {
UENUM = KEYBOARD_ENDPOINT;
if (UEINTX & (1 << RWAL)) {
keyboard_idle_count++;
if (keyboard_idle_count == keyboard_idle_config) {
keyboard_idle_count = 0;
UEDATX = keyboard_modifier_keys;
UEDATX = 0;
for (i = 0; i < 6; i++) {
UEDATX = keyboard_keys[i];
}
UEINTX = 0x3A;
}
}
}
}
}
// Misc functions to wait for ready and send/receive packets
static inline void usb_wait_in_ready(void) {
while (!(UEINTX & (1 << TXINI))) {}
}
static inline void usb_send_in(void) { UEINTX = ~(1 << TXINI); }
static inline void usb_wait_receive_out(void) {
while (!(UEINTX & (1 << RXOUTI))) {}
}
static inline void usb_ack_out(void) { UEINTX = ~(1 << RXOUTI); }
// USB Endpoint Interrupt - endpoint 0 is handled here. The
// other endpoints are manipulated by the user-callable
// functions, and the start-of-frame interrupt.
//
ISR(USB_COM_vect) {
uint8_t intbits;
const uint8_t *list;
const uint8_t *cfg;
uint8_t i, n, len, en;
uint8_t bmRequestType;
uint8_t bRequest;
uint16_t wValue;
uint16_t wIndex;
uint16_t wLength;
uint16_t desc_val;
const uint8_t *desc_addr;
uint8_t desc_length;
UENUM = 0;
intbits = UEINTX;
if (intbits & (1 << RXSTPI)) {
bmRequestType = UEDATX;
bRequest = UEDATX;
wValue = UEDATX;
wValue |= (UEDATX << 8);
wIndex = UEDATX;
wIndex |= (UEDATX << 8);
wLength = UEDATX;
wLength |= (UEDATX << 8);
UEINTX = ~((1 << RXSTPI) | (1 << RXOUTI) | (1 << TXINI));
if (bRequest == GET_DESCRIPTOR) {
list = (const uint8_t *)descriptor_list;
for (i = 0;; i++) {
if (i >= NUM_DESC_LIST) {
UECONX = (1 << STALLRQ) | (1 << EPEN); // stall
return;
}
desc_val = pgm_read_word(list);
if (desc_val != wValue) {
list += sizeof(struct descriptor_list_struct);
continue;
}
list += 2;
desc_val = pgm_read_word(list);
if (desc_val != wIndex) {
list += sizeof(struct descriptor_list_struct) - 2;
continue;
}
list += 2;
desc_addr = (const uint8_t *)pgm_read_word(list);
list += 2;
desc_length = pgm_read_byte(list);
break;
}
len = (wLength < 256) ? wLength : 255;
if (len > desc_length)
len = desc_length;
do {
// wait for host ready for IN packet
do {
i = UEINTX;
} while (!(i & ((1 << TXINI) | (1 << RXOUTI))));
if (i & (1 << RXOUTI))
return; // abort
// send IN packet
n = len < ENDPOINT0_SIZE ? len : ENDPOINT0_SIZE;
for (i = n; i; i--) {
UEDATX = pgm_read_byte(desc_addr++);
}
len -= n;
usb_send_in();
} while (len || n == ENDPOINT0_SIZE);
return;
}
if (bRequest == SET_ADDRESS) {
usb_send_in();
usb_wait_in_ready();
UDADDR = wValue | (1 << ADDEN);
return;
}
if (bRequest == SET_CONFIGURATION && bmRequestType == 0) {
usb_configuration = wValue;
usb_send_in();
cfg = endpoint_config_table;
for (i = 1; i < 5; i++) {
UENUM = i;
en = pgm_read_byte(cfg++);
UECONX = en;
if (en) {
UECFG0X = pgm_read_byte(cfg++);
UECFG1X = pgm_read_byte(cfg++);
}
}
UERST = 0x1E;
UERST = 0;
return;
}
if (bRequest == GET_CONFIGURATION && bmRequestType == 0x80) {
usb_wait_in_ready();
UEDATX = usb_configuration;
usb_send_in();
return;
}
if (bRequest == GET_STATUS) {
usb_wait_in_ready();
i = 0;
#ifdef SUPPORT_ENDPOINT_HALT
if (bmRequestType == 0x82) {
UENUM = wIndex;
if (UECONX & (1 << STALLRQ))
i = 1;
UENUM = 0;
}
#endif
UEDATX = i;
UEDATX = 0;
usb_send_in();
return;
}
#ifdef SUPPORT_ENDPOINT_HALT
if ((bRequest == CLEAR_FEATURE || bRequest == SET_FEATURE) &&
bmRequestType == 0x02 && wValue == 0) {
i = wIndex & 0x7F;
if (i >= 1 && i <= MAX_ENDPOINT) {
usb_send_in();
UENUM = i;
if (bRequest == SET_FEATURE) {
UECONX = (1 << STALLRQ) | (1 << EPEN);
} else {
UECONX = (1 << STALLRQC) | (1 << RSTDT) | (1 << EPEN);
UERST = (1 << i);
UERST = 0;
}
return;
}
}
#endif
if (wIndex == KEYBOARD_INTERFACE) {
if (bmRequestType == 0xA1) {
if (bRequest == HID_GET_REPORT) {
usb_wait_in_ready();
UEDATX = keyboard_modifier_keys;
UEDATX = 0;
for (i = 0; i < 6; i++) {
UEDATX = keyboard_keys[i];
}
usb_send_in();
return;
}
if (bRequest == HID_GET_IDLE) {
usb_wait_in_ready();
UEDATX = keyboard_idle_config;
usb_send_in();
return;
}
if (bRequest == HID_GET_PROTOCOL) {
usb_wait_in_ready();
UEDATX = keyboard_protocol;
usb_send_in();
return;
}
}
if (bmRequestType == 0x21) {
if (bRequest == HID_SET_REPORT) {
usb_wait_receive_out();
usb_ack_out();
usb_send_in();
return;
}
if (bRequest == HID_SET_IDLE) {
keyboard_idle_config = (wValue >> 8);
keyboard_idle_count = 0;
usb_send_in();
return;
}
if (bRequest == HID_SET_PROTOCOL) {
keyboard_protocol = wValue;
usb_send_in();
return;
}
}
}
}
UECONX = (1 << STALLRQ) | (1 << EPEN); // stall
}
int8_t usb_extra_send(uint8_t report_id, uint16_t data) {
uint8_t intr_state, timeout;
if (!usb_configured())
return -1;
intr_state = SREG;
cli();
UENUM = EXTRA_ENDPOINT;
timeout = UDFNUML + 50;
while (1) {
// are we ready to transmit?
if (UEINTX & (1 << RWAL)) { break; }
SREG = intr_state;
// has the USB gone offline?
if (!usb_configured()) { return -1; }
// have we waited too long?
if (UDFNUML == timeout) { return -1; }
// get ready to try checking again
intr_state = SREG;
cli();
UENUM = EXTRA_ENDPOINT;
}
UEDATX = report_id;
UEDATX = data & 0xFF;
UEDATX = (data >> 8) & 0xFF;
UEINTX = 0x3A;
SREG = intr_state;
return 0;
}
int8_t usb_extra_consumer_send() {
int result = 0;
// don't resend the same key repeatedly if held, only send it once.
if (consumer_key != last_consumer_key) {
result = usb_extra_send(REPORT_ID_CONSUMER, consumer_key);
if (result == 0) {
last_consumer_key = consumer_key;
}
}
return result;
}
// --------------------------------------------------------
// debug
// --------------------------------------------------------
#ifdef KBD_DEBUG
// transmit a character. 0 returned on success, -1 on error
int8_t usb_debug_putchar(char c) {
static uint8_t previous_timeout = 0;
uint8_t timeout, intr_state;
// if we're not online (enumerated and configured), error
if (!usb_configuration)
return -1;
// interrupts are disabled so these functions can be
// used from the main program or interrupt context,
// even both in the same program!
intr_state = SREG;
cli();
UENUM = DEBUG_TX_ENDPOINT;
// if we gave up due to timeout before, don't wait again
if (previous_timeout) {
if (!(UEINTX & (1 << RWAL))) {
SREG = intr_state;
return -1;
}
previous_timeout = 0;
}
// wait for the FIFO to be ready to accept data
timeout = UDFNUML + 4;
while (1) {
// are we ready to transmit?
if (UEINTX & (1 << RWAL))
break;
SREG = intr_state;
// have we waited too long?
if (UDFNUML == timeout) {
previous_timeout = 1;
return -1;
}
// has the USB gone offline?
if (!usb_configuration)
return -1;
// get ready to try checking again
intr_state = SREG;
cli();
UENUM = DEBUG_TX_ENDPOINT;
}
// actually write the byte into the FIFO
UEDATX = c;
// if this completed a packet, transmit it now!
if (!(UEINTX & (1 << RWAL))) {
UEINTX = 0x3A;
debug_flush_timer = 0;
} else {
debug_flush_timer = 2;
}
SREG = intr_state;
return 0;
}
// immediately transmit any buffered output.
void usb_debug_flush_output(void) {
uint8_t intr_state;
intr_state = SREG;
cli();
if (debug_flush_timer) {
UENUM = DEBUG_TX_ENDPOINT;
while ((UEINTX & (1 << RWAL))) {
UEDATX = 0;
}
UEINTX = 0x3A;
debug_flush_timer = 0;
}
SREG = intr_state;
}
void usb_debug_print(const char *s) {
char c;
while ((c = pgm_read_byte(s++))) {
usb_debug_putchar(c);
}
usb_debug_flush_output();
}
void usb_debug_printf(const char *fmt, ...) {
char buf[128];
va_list args;
va_start(args, fmt);
vsnprintf_P(buf, sizeof(buf), fmt, args);
va_end(args);
for (int i = 0; i < sizeof(buf); i++) {
char c = buf[i];
if (!c) break;
usb_debug_putchar(c);
}
usb_debug_flush_output();
}
void usb_debug_free_memory() {
extern int __heap_start, *__brkval; int v, free;
free = (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
debug_printf("free memory: %d bytes\n", free);
}
#endif